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Abstract
The locus coeruleus (LC) has established functions in both attention and respiration.
Good attentional performance requires optimal levels of tonic LC activity, and must
be matched to task consistently. LC neurons are chemosensitive, causing respiratory
phrenic nerve firing to increase frequency with higher CO2 levels, and as CO2 level
varies with the phase of respiration, tonic LC activity should exhibit fluctuations at
respiratory frequency. Top-down modulation of tonic LC activity from brain areas
involved in attentional regulation, intended to optimize LC firing to suit task require-
ments, may have respiratory consequences as well, as increases in LC activity
influence phrenic nerve firing. We hypothesize that, due to the physiological and
functional overlaps of attentional and respiratory functions of the LC, this small neu-
romodulatory nucleus is ideally situated to act as a mechanism of synchronization
between respiratory and attentional systems, giving rise to a low-amplitude oscillation
that enables attentional flexibility, but may also contribute to unintended destabiliza-
tion of attention. Meditative and pranayama practices result in attentional, emotional,
and physiological enhancements that may be partially due to the LC’s pivotal role as
the nexus in this coupled system. We present original findings of synchronization
between respiration and LC activity (via fMRI and pupil dilation) and provide evi-
dence of a relationship between respiratory phase modulation and attentional
performance. We also present a mathematical dynamical systems model of
respiratory-LC-attentional coupling, review candidate neurophysiological mecha-
nisms of changes in coupling dynamics, and discuss implications for attentional
theory, meditation, and pranayama, and possible therapeutic applications.
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1 | INTRODUCTION
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Respiration, being disturbed, the mind becomes
Disturbed. By restraining respiration, the Yogi gets
Steadiness of mind.

Hatha Yoga Pradapika, Yogi Svatmaram

Yogis and Buddhist practitioners have long considered
the breath an especially suitable object for meditation. The
choice of the breath over other possible items arose presum-
ably not simply because respiration provides a subtle and
readily available object of focus, but because the characteris-
tics of respiration can be observed to change in specific ways
with attentional and emotional states. It is believed that by
observing the breath, and regulating it in precise ways—a
practice known as pranayama—changes in arousal, attention,
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and emotional control that can be of great benefit to the medi-
tator are realized. Innumerable anecdotal reports support these
claims, and physical, emotional, and attentional improve-
ments have been noted in many studies (reviews: Chiesa,
Calati, & Serretti, 2011; Grossman, Niemann, Schmidt, &
Walach, 2004; Lippelt, Hommel, & Colzato, 2014; Sengupta,
2012).

We know from behavioral and imaging studies that medi-
tative practices are associated with improvements that acti-
vate and strengthen the frontal attentional system (H€olzel
et al., 2011; Lazar et al., 2005; Luders, Toa, Leport, & Gaser,
2009; Vestergaard-Poulsen et al., 2009) and that default
mode network (DMN) activity, associated with mind-
wandering states, is reduced (Brewer et al., 2011; Taylor
et al., 2013; Wells et al., 2013). Changes in cortical volume
and white matter connectivity have also been observed
(Laneri et al., 2015; Luders, Clark, Narr, & Toga, 2011;
Tang et al., 2010; Tang, Lu, Fan, Yang, & Posner, 2012)
even following short periods of practice. Meditation and pra-
nayama also produce changes in respiration (Vyas & Dikshit,
2002; Wallace & Benson, 1972) and autonomic nervous sys-
tem activity, as measured by habituation, frequency, and
spontaneous galvanic skin response (GSR) response to stres-
sors (Orme-Johnson, 1973) and cardiorespiratory coupling
(Cysarz & Bussing, 2005).

One might suppose that the object of focus in meditation
should be irrelevant, that it is the act of focusing attention and
not the object of focus—in this case, the breath—that is
important. But the Buddha states clearly, in the Ananda
Sutra: “from the development, from the repeated practice, of
respiration-mindfulness concentration, there comes to be nei-
ther wavering nor trembling of body, nor wavering nor trem-
bling of mind” (Sai, 2010). According to Svatmarama, in the
Hatha Yoga Pradapika (2:2), “. . .when the breath wanders
the mind is unsteady. But when the breath is calmed, the
mind too will be still” (Muktibodhananda, 2013). Patanjali, in
the Yoga Sutras (2.53), instructs that “. . . through these prac-
tices and processes of pranayama, which is the fourth of the
eight steps, the mind acquires or develops the fitness, qualifi-
cation, or capability for true concentration (dharana). . .”
(Satchidananda, 2012). The focus upon the breath is of clear
importance in traditional practice, but how might respiration
and attention influence each other from a neurophysiological
perspective?

While a few scattered scientific attempts at examining
the relationship between respiration and attention have been
made (Gellhorn & Kraines, 1936; Lehmann, 1893; Porges &
Raskin, 1969; Taylor, 1901; Winkler, 1898), a comprehen-
sive theory and concrete neurobiological mechanism that can
explain the effects of respiratory monitoring and control on
cognition, and vice versa, has not been proposed. One inter-
esting possibility is that the respiratory and attentional sys-
tems are coupled at the neural level, such that information

transfer between the two systems occurs bidirectionally at an
anatomical point where the respiratory and attentional sys-
tems overlap.

In this review, we describe respiration and attention as a
coupled dynamical system. Specifically, we hypothesize that
they can be described as autonomous oscillatory systems
exhibiting coupling via information transfer through a third
autonomous oscillator, the locus coeruleus (LC). We review
the neurophysiological knowledge of the relevant systems,
emphasize the influence of CO2 on LC tonic activity, the
importance of LC activity to attentional state and stability,
and discuss how these may be synchronized with top-down
influences from attentional areas.

1.1 | Coupled systems

Coupling, or synchronization, is a common phenomenon in
nature, particularly in biological systems. Weakly interactive
forces (e.g., mechanical vibrations, heat, or sound) cause
autonomously oscillating systems to tend toward a synchron-
ized state (Huygens, 1673; Pikovsky, Rosenblum, & Kurths,
2001; Strogatz & Stewart, 1993).

This phenomenon was first described by Huygens after
he lay sick in bed on a long sea journey, observing two pen-
dulum clocks hanging upon a common wooden beam. He
noted the gradual synchronization of the pendula, and even-
tually discovered that very small vibrations were passing
between clocks, through the beam upon which they were
fixed, causing the pendula to drift into, and then remain, per-
manently fixed, in one of two states—either perfect synchro-
nization or antisynchronization (a stable phase relationship of
1808).

As it turns out, examples of this type of synchronized
behavior are common in the natural world (e.g., flashing fire-
flies, flocks of birds in flight, slime mold behavior), and syn-
chronization is thought to play an important role in neural
and physiological systems as well. Neural systems exhibit
phase and frequency synchronization (Buszaki & Draguhn,
2004), both between larger functional areas (Engel & Konig,
1991; Konig, Engel, Lowel, & Singer, 1993) and individual
proximal neurons (Gray, Koenig, Engel, & Singer, 1989).
Neuronal coupling is thought to subserve perceptual binding
(Eckhorn, Reitboeck, Arndt, & Dicke, 1988; Gray et al.,
1989), cortical communication and coordination (Fries,
2005), and influence attention and saliency (Biederlack et al.,
2006). Nonlinear physiological coupling between the heart
and respiration in human beings has also been observed
(Jamsek, Stefanovska, & McClintock, 2004; Schafer, Rose-
nblum, Kurths, & Hans-Henning, 1998). It is important to
point out that synchronization in the context of dynamical
systems is the result of independently oscillating systems
interacting and tending toward stable interdynamics in the
absence of external forcing or entrainment.

2 of 17 | MELNYCHUK ET AL.



1.2 | LC and cognition

In mammals, the LC, a small blue bilateral nucleus in the
pons, is the main source of cortical noradrenaline (NA), and
through a nearly complete and exclusive innervation of the
cortex (Loughlin, Foote, & Bloom, 1986), plays a significant
role in regulating brain function. The LC can be loosely con-
sidered a cortical analogue of the adrenal glands, influencing
arousal and helping optimize cognitive states for varied envi-
ronmental and volitional demands.

NA is a modulatory neurotransmitter, known to be
involved in regulating sleep-waking states (Aston-Jones &
Bloom, 1981; Jones, 1991), cortical arousal (Carter et al.,
2010), signal detection threshold (Sara & Herv�e-Minvielle,
1995; Segal & Bloom, 1976; Waterhouse, Moises, & Wood-
ward, 1998), and decision processes (Aston-Jones, Rajkow-
ski, & Kubiak, 1997; Bouret & Sara, 2004; Clayton,
Rajkowski, Cohen, & Aston-Jones, 2004; Rajkowski, Majc-
zynski, Clayton, & Aston Jones, 2004; Usher, Cohen,
Servan-Schreiber, Rajkowski, & Aston-Jones, 1999). The
LC exhibits a continuum of behavior, ranging from high sus-
tained tonic firing during episodes of distractibility (Aston-
Jones, Rajkowski, & Cohen, 1999; Aston-Jones, Rajkowski,
Kubiak, Valentino, & Shipley, 1996; Usher et al., 1999) to
near-absolute, GABA-inhibited quiescence during REM
(rapid eye movement) sleep (Aston-Jones & Bloom, 1981).

While the role of the LC in waking and arousal has long
been known, a recent focus on its specific cognitive and
attentional functions has revealed two distinct modes of fir-
ing that are associated with equally distinct modes of atten-
tional strategy (Aston-Jones & Cohen, 2005). Projections
from the orbitofrontal cortex (OFA) and anterior cingulate
(ACC) are thought to drive the LC-noradrenergic (LC-NA)
system into one of two stable states of activity, a high tonic
(sustained) mode or a phasic (bursting) mode accompanied
by moderate tonic activity (Aston-Jones & Cohen, 2005).
The OFA and ACC are known to play a role in calculating
task utility, and there are prominent efferent connections to
the LC from both (Aston-Jones et al., 2002; Rajkowski, Lu,
Zhu, Cohen, & Aston-Jones, 2000; Zhu, Iba, Rajkowski, &
Aston-Jones, 2004), with few sparse connections from other
cortical areas.

The switching of attentional state via tonic LC activity
theoretically results in a flexible attentional system that
allows cycling between exploitative and exploratory behav-
iors to find and meet task demands in a changing environ-
ment, and is known as the adaptive gain theory (Aston-Jones
& Cohen, 2005). In brief, during exploitative behavior, when
an agent is focused on a singular task with high perceived
utility, high-amplitude transient phasic bursting is observed
preceding behavioral responses to task-relevant stimuli, sus-
tained firing is maintained at a moderate level, and task per-
formance is relatively strong. As task utility wanes, and tonic

LC firing increases, phasic firing is reduced. This level of
tonic LC activity facilitates a decoupling of attention from
the current object of focus, which allows a reevaluation of
the current environments (both mental and physical) and the
generation of hypotheses, goals, and subgoals of potentially
greater value (Hayes & Petrov, 2015).

Attention is also known to exhibit regular oscillations
between task-focused and mind-wandering states (Fox &
Raichle, 2007; Franson, 2006; Songua-Barke & Castellanos,
2007), which would necessitate, according to the adaptive
gain theory, a corresponding oscillation in LC tonic activity
that temporarily broadens the focus of awareness, by increas-
ing neural gain and functional connectivity (Eldar, Cohen, &
Niv, 2013). The mechanism responsible for this oscillation
is believed to be a metabolic process (Songua-Barke &
Castellanos, 2007), but remains unknown. This “refresh cycle”
of attention essentially opens an opportunistic window for
attentional reallocation and is thought to be periodic, with a fre-
quency somewhat greater than 0.1 Hz (Langner & Eickhoff,
2013; Robertson, Ridgeway, Greenfield, & Parr, 1997).

1.3 | LC and CO2 chemosensitivity

While the cognitive and attentional aspects of LC activity are
interesting and impressive on their own, the LC simultane-
ously carries out a second phylogenetically more primitive
role, as an important part of the brainstem respiratory net-
work. It is well established that brainstem respiratory nuclei
initiate respiration when intracellular or extracellular CO2

levels increase. LC neurons exhibit chemosensitivity to
hypercapnic states (Gargaglioni, 2010), increasing inspira-
tory drive when CO2 (H1)1 levels are increased (Biancardi,
Bicego, Almeida, & Gargaglioni, 2008; Filosa, Dean, &
Putnam, 2002; Gargaglioni, Hartzler, & Putnam, 2010;
Oyamada, Ballantyne, Muckenhoff, & Scheid, 1998; Pineda
& Aghajanian, 1997). In vitro LC neurons have been shown
to fire in synchrony with the respiratory phrenic nerve
(Oyamada et al., 1998), and increased LC firing frequency of
up to 126% has been observed with controlled decrease in
pH levels in the LC (Filosa et al., 2002). Chemical ablation
of LC neurons results in a significant attenuation of the
hypercapnic respiratory effect (Bianciardi et al., 2008;
Noronha-de-Souza et al., 2006). Connections from the LC to
preinspiratory neurons have also been identified (Dobbins &
Feldman, 1994; Yackle et al., 2017). Importantly, because
arterial CO2 levels are known to fluctuate with respiration
(Band, Cameron, & Semple, 1969; Band, Wolff, Ward,
Cochrane, & Prior, 1980; Honda & Ueda, 1961; see Figure 1),
this should induce a corresponding fluctuation of LC tonic

1Positive hydrogen ions result from CO2 combining with H2O to pro-
duce carbonic acid, which is then broken down into bicarbonate, result-
ing in a surplus H1 ion.
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activity at the same frequency, as these chemosensitive neu-
rons are bathed in arterial blood.

1.4 | LC and meditation

Given the wide-ranging influence that the LC has on atten-
tion, respiration, and autonomic activity, it is unsurprising
that it has been hypothesized to play an important role in the
effects of meditation. Craigmyle (2013) theorizes that via
activation by the ACC, which is a part of the salience, orient-
ing, and executive attention networks (Peterson & Posner
2012; Posner & Petersen, 1990), the LC adapts the cortical
and peripheral nervous systems of the organism to optimize
behavior to a constantly changing environment, and that
meditation improves the individual’s ability to do this.
Importantly, cortical NA has been directly observed to
decrease during meditation (Infante et al., 2001; Walton,
Pugh, Gelderloos, & Macrae, 1995), and increased gray
matter density in the pons (the location of the LC and
other important respiratory nuclei) has been found in a cross-
section of long-term breath-focused meditators (Vestergaard-
Poulsen et al., 2009), as well as in a randomized study
(Holzel et al., 2011).

1.5 | LC as respiratory-attentional coupling
mechanism

The LC is obviously an interesting candidate as a potential
coupling mechanism in a hypothetical respiratory-attentional
system, as it has important simultaneous roles in both atten-
tion and respiration. Consisting of approximately 25,000 neu-
rons per hemisphere, this small nucleus could offer important
insights into attentional dynamics and play an important role
in an empirical explanation of the ancient insights of yogis
and meditators. It could also potentially explain some of the
cognitive and emotional benefits observed with various
breath-centered practices by helping to explain how respira-
tion and attention are linked (Figure 2).

2 | INITIAL RESEARCH FINDINGS

Recent research from our lab has revealed that LC activity,
as measured by BOLD imaging and pupil dilation, a known

proxy of LC activity (Joshi, Kalwani, & Gold, 2016;
Murphy, O’Connell, O’Sullivan, Robertson, & Balsters,
2014; Murphy, Robertson, Balsters, & O’Connell, 2011;
Rajkowski, Kubiak, & Aston-Jones, 1993), exhibits phase
coherence, or is synchronized, with respiration (Figure 3).

In brief, respiration, pupil dilation, and BOLD activation
were measured in 14 individuals during an 8-min resting
scan and a 20-min auditory oddball task (see Murphy et al.,
2014). Stimulus presentation during the task was pseudoran-
dom with an interstimulus interval of 2.5–3.5 s. A pupil-
covariant subset of LC neurons was isolated, and corrected
for instantaneous physiological noise (RETROICOR).
Covariance with activity in the fourth ventricle, an area prox-
imal to the LC and known to exhibit significant respiratory
artifacts during MRI, was also regressed from the LC time
series to control for physiological respiratory artifacts.

To examine respiratory-related LC activity, normalized
LC BOLD signals were locked to the instant of the peak and
trough of respiration (6 8 s), and vector averaging was per-
formed. Task LC activation showed clear synchronization
with respiratory phase (Figure 3a), and an apparent 1808
phase difference in LC BOLD activity between respiratory
peak and respiratory trough was verified by cross-
correlation. Paired t tests for dependent samples (two-tailed)
showed highly significant signal separation at 4–8 s follow-
ing the peak/trough of respiration (Table 1, df5 7772). Cor-
responding resting state analysis of peak versus trough
locked activity showed a sustained antisynchronized pattern

FIGURE 1 Oscillation of CO2(pH) at respiratory frequency (from Band et al., 1980; reprinted with permission)

FIGURE 2 Diagram showing hypothesized coupled information
transfer between respiratory and attentional systems via the LC. Frontal
attentional systems influence LC tonic/phasic activity. Oscillation of CO2

levels cause tonic fluctuations in LC at respiratory frequency. LC tonic
activity in turn influences both attentional state and respiration. Note the
bidirectionality of the coupling. Such coupled systems tend to evolve
toward stable, nonlinear, or chaotic synchrony. Sine wave inside of circle
indicates autonomously oscillating system
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of activity (Figure 3b), and this was verified by cross-
correlation and with a circular test for nonuniformity (R test,
df5 9,9, z5 7.84, p< .0001) performed on the angular
phase differences (calculated with Hilbert transform) of the
two signals. Amplitude comparisons, however, while sugges-
tive of a trend (Table 2, paired t tests for dependent samples,
single-tailed; df5 3358), were not highly significant. Possi-
ble reasons for this are the shorter duration of the resting
scans relative to task and the absence of task-driven phasic
LC amplitude contributions.

As a supplement to the paired t tests, and to further
examine the null hypothesis that LC activation did not differ
between respiratory peak and trough, bootstrap tests were
conducted by aggregating LC activation time-locked to
each peak and trough for each time point (-8 to 18 s) and
resampling vectors of the same length with replacement
(n5 50,000). A comparison of the true mean peak-trough
difference in LC activation with the bootstrapped distribu-
tions for both task and resting state produced results roughly
comparable with paired t tests for both task (Table 1) and
resting state (Table 2).

Because increasing evidence suggests that pupil diameter
provides a noninvasive proxy of LC activity (Alnaes et al.,
2014; Joshi et al., 2016; Liu, Rodenkirch, Moskowitz,
Shriver, & Wang, 2017; Reimer et al., 2016; Unsworth &
Robinson, 2016; Varazzani, San-Galli, Gilardeau, & Bouret,
2015), a corresponding analysis was conducted on
respiratory-locked normalized, blink-corrected pupil wave-
forms. This revealed a clear pattern of synchronization dur-
ing both task and rest (Figure 2c,d). Phase coherence, a
measure of the angular difference of the instantaneous phase
between two signals (Equation 1) was calculated to be
R5 0.977, with a mean phase difference Du521.629 radi-
ans (rad) for task and R5 0.803, Du521.79 during rest.
We interpret both the LC and pupil findings as suggestive of
synchronization between respiratory, LC, and pupil activity.

R5

����
1
N

XN

j51

ei ux tjð Þ2uy tjð Þ½ �
���� (1)

Equation 1. Method used to calculate phase
coherence (R), where N is the sample size of the

FIGURE 3 (a) Respiratory-locked LC activity (respiratory peak vs. trough) during oddball task session. (b) Respiratory-locked LC activity (peak vs.
trough) during rest. (c) Normalized pupil and respiratory global averaged waveforms during task locked to the trough of respiration. (d) Normalized pupil
and respiratory global averagedwaveforms from resting state locked to the trough of respiration. (c) and (d) are illustrative of respiratory-pupil synchroni-
zation and their phase offset

TABLE 1 Task respiratory-locked LC BOLD analysis results

Time to respiratory peak/trough

28 s 26 s 24 s 22 s 0 s 2 s 4 s 6 s 8 s

Paired t score 0.064 0.235 0.533 0.213 0.427 1.014 4.349 5.530 2.715

p value .949 .814 .594 .831 .669 .314 < .0001 < .00001 .007

Bootstrap
(n5 50,000)
p value

.52 .592 .71 .42 .34 .16 0 0 < .005

Note. Significant antisynchronization observed from 4–8 s following respiration.
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angular distribution, i5
ffiffiffiffiffiffiffi
21

p
(imaginary opera-

tor), e is the natural logarithm, and uxand uy are
instantaneous phase angles (in radians) from
two different signals at time tj. R returns an
average vector of length 0 � R � 1:0. Instanta-
neous phase values are calculated using the Hil-
bert transform.

To examine how respiratory activity might be related to
attentional performance, participants were binned into low
and high reaction time variability groups (RTV). RTV is
known to correlate well with attentional performance
(Jensen, 1992) and is higher in groups with compromised
attention, such as attention deficit hyperactivity disorder
(ADHD; Kofler et al., 2013; Tamm et al., 2012), dementia
(Hultsch et al., 2000), Alzheimer’s disease (Gorus, De Raedt,
Lambert, Lemper, & Mets, 2008; Jackson, Balota, Duschek,
& Head, 2012; Tse, Balota, Yap, Duchek, & McCabe,
2010), and traumatic brain injury (TBI; Whyte, Polansky,
Fleming, Coslett, & Cavallucci, 1995). Importantly, high
RTV is present more so in TBI patients with focal frontal
lesions as opposed to nonfrontal lesions (Stuss, Murphy,
Binns, & Alexander, 2003). RTV also covaries with LC
tonic firing rate (Usher et al., 1999) and prestimulus pupil
diameter (Murphy et al., 2011; van den Brink, Murphy, &
Nieuwenhuis, 2016) in simple target detection tasks.

The angular phase of respiration at the instant of stimulus
presentation was calculated for all trials for all participants,
and mean participant phase-locking angles were calculated.
Clear clustering near the trough of respiration (-2.53 rad)
was observed in the low RTV group (Figure 4a), while the
HRTV group exhibited greater variability, with an advanced
mean phase angle (-1.37 rad) approaching the top of the
respiratory cycle. The mean phase angle difference was
highly significant (Watson-Williams test, F5 279.6,
df5 6240, p< .0001) at the individual trial level, and mar-
ginally significant at the participant level (Watson-Williams
test, F5 4.1, df5 1,14, p5 .06). Variability (concentration)
of phase-locking angle was significantly different between
the high and low RTV groups at both item (K test,
F5 1.095, df5 1,6271, p <. 0001) and the participant level
(K test, F5 5.98, df5 1,14, p5 .02).

2.1 | Present findings discussion

Respiration has been observed to exhibit phase synchroniza-
tion to stimulus presentation in another study (Huijbers et al.,
2014), and recent research (Yackle et al., 2017) has shown
that removal of respiratory pattern generator (cahedrin-9)
pre-Botzinger neurons reduces arousal in mice, possibly via
termination of the connection from this respiratory pattern
generator to the LC. A commentary on this finding further

TABLE 2 Resting state respiratory-locked LC BOLD analysis results

Time to respiratory peak/trough

28 s 26 s 24 s 22 s 0 s 2 s 4 s 6 s 8 s

Paired t score 0.094 0.115 0.976 2.002 1.923 1.620 1.403 0.892 0.1757

p value .537 .454 .165 .023 .027 .053 .080 .186 .430

Bootstrap
(n5 50,000)
p value

.626 .555 .230 .041 .04 .056 .070 .163 .433

Note. Effects are marginal, but a trend toward significance is present.

FIGURE 4 Analysis of participants binned into high and low RTV. (a) Stimulus-locked instantaneous Respiratory Phase Angle3RTV (low vs.
high groups). Participant mean stimulus-locked respiratory phases were used for clarity of presentation. RTV on radial axis. (b) Stimulus-locked respiratory
waveform averaged across all trials for low and high RTV groups
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suggested that respiration could affect arousal, and perhaps
cognition, via the LC (Sheikhbahaei & Smith, 2017), and a
very recent study has observed coupling between respiration
and fluctuations of electrical activity in rodent brains (Tort,
Brankack, & Draguhn, 2018). Stimulus-locked respiratory
phase has further been shown to affect perception of fear and
the encoding of memory (Zelano et al., 2005), and respira-
tion exhibits coupling with frontal theta activity (Stankovski
et al., 2016), which is inversely related to DMN activity
(Braboszcz & Delorme, 2011; Scheeringa et al., 2008).
These studies, our findings reported above, and the existing
functional and anatomical knowledge of the LC and its con-
nectivity together suggest that the respiratory and attentional
systems may indeed be coupled. The lack of strong LC
BOLD amplitude findings during the resting state condition
above require cautious interpretation, however, and further
higher powered studies would be required to decisively
determine if this synchronization can be observed by direct
imaging of the LC. This caveat notwithstanding, the strong
LC-respiratory synchronization during task, and pupil-
respiratory synchronization in both conditions, do suggest
that these signals may indeed be coupled during rest as well
as during an attentionally demanding exercise. The present
findings also indicate an attentional advantage related to a
more accurate and precise phase modulation of respiration.

3 | PROPOSED MATHEMATICAL
MODEL OF RESPIRATORY-LC-
ATTENTIONAL COUPLING

We outline below a model of the relationship between respi-
ration and attention, and their hypothetical coupling via the
LC. The LC, the attentional system, and respiratory activity
all exhibit regular oscillations, and can be considered autono-
mous noisy oscillators, exhibiting weak, possibly transient,
and/or nonlinear coupling (Figure 1). The dynamics of such
a system can be expressed as a group of coupled differential
equations. Models of this type have previously been used to
describe system dynamics of neural and physiological
rhythms (Mirollo & Strogatz, 1990; Pikovsky et al., 2001).
Our proposed system of equations describing the coupling
between respiration, attention, and LC oscillatory systems is
described in Equation 2.

_/A5xA1 EAFA /A;/LCð Þ1nA
_/LC5xLC1 ELCFLC /LC;/A;/Rð Þ1nLC

_/R5xR1 ELCFR /R;/LCð Þ1nR (2)

Equation 2. Description of the coupled dynami-
cal system of autonomous oscillators of respira-
tion, LC tonic activity, and task-focused/DMN

oscillation (“attentional refresh cycle”), where _/
is a first order derivative describing a variable’s
phase evolution with respect to time, x is the
natural frequency of the oscillator, E is the cou-
pling strength, F is the coupling function (a 2p-
modular function), / is the instantaneous phase,
and n are stochastic, linear, or nonlinear (poten-
tially 2p-periodic) noise terms.

There are obviously other factors, considered noise terms
presently in the model, that will affect the ultimate dynamics
expressed by the individual oscillators, and the coupled sys-
tem as a whole, such as environmental exigencies (stimuli),
autonomic influences, and other neural connections, so this
“sandboxed” model can be viewed as an abstracted, idealized
expression of the isolated dynamics of the hypothesized
respiratory-attentional system with the LC as its nexus. It
would be possible, of course, to expand the model to include
other oscillatory (e.g., autonomic fluctuations) and pulsatile
(e.g., environmental stimuli) influences.

A similar mathematical description was employed recently
by Stankovski et al. (2016) to examine the effect of anesthesia
on coupling dynamics of heart rate, respiration, and frontal
EEG signal, in which they observed coupling between respira-
tion and frontal theta rhythm. As mentioned, frontal theta
amplitude is a negatively correlated index of DMN activity,
which is active during task-unrelated thought, or mind wan-
dering, so this finding is of direct relevance to our hypothesis.

The present model also shares similarities with mathemati-
cal models for schizophrenia in which shallower basins of
attraction and decreased attractor stability lead to decreased
memory and increased distractibility (Loh, Rolls, & Deco,
2007; Rolls, Loh, Deco, & Winterer, 2008), and differences in
phase-locking dynamics and coupling strength of the auditory
cortex and thalamus contribute to changes in auditory evoked
potentials (Popovych, Kupper, Muller, & Brockhaus-Dumke,
2009; Rosjat, Daun-Gruhn, & Popovych, 2014).

3.1 | Proposed modulators of respiratory-LC-
attentional coupling

As we theorize not only that these systems are coupled, but
also that breath-focused practices can alter the nature of this
coupling, we speculate below on five possible mechanisms by
which the coupling strengths (E) and noise terms (n) in the
above equations might be modulated, thereby modifying the
dynamics of the coupling between respiration and attention.

3.1.1 | Attentional and executive systems

As mentioned earlier, meditation is associated with func-
tional, electrical, morphometric, and connective changes in
the brain, indicative of increased frontal control (see Tang,
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Holzel, & Posner, 2015, for a review), along with decreased
oscillation between mind-wandering and focused states. The
ACC, an integral part of the attentional system, is known to
directly modulate LC activity (Craigmyle, 2013; Sara &
Herve-Minvielle, 1995). While there have been no direct
recording studies of LC activity in meditators, increased
attentional stability, a known result of meditative practices
(Lutz, Slagter, Dunne, & Davidson, 2008; Jha, Krompinger,
& Baime (2007); Slagter et al., 2007) should logically be
accompanied by stabilized tonic modulation of the LC. It is
worth reiterating here that our preliminary data show that nat-
ural variation in attentional performance (RTV) dissociates
the indices of LC function; therefore, it follows that medita-
tion should further flatten the tonic dynamics of the LC.

3.1.2 | Insula and interoceptive feedback

The insula is known to incorporate visceral information about
the physiological organism (Craig, 2002), and its activity has
been shown to correlate with the ability to consciously moni-
tor physiological processes (Critchley, Wiens, Rotshtein,
Ohman, & Dolan, 2004), including respiration (Daubenmier,
2013; Farb, Segal, & Anderson, 2012, 2013). Research on the
morphology and activity of the insula in meditators shows
overall increased volume and activity (Holzel et al., 2007;
Lazar et al., 2005; Manna et al., 2010; but see Luders et al.,
2009), and increased gyrification (Luders et al., 2012). Decou-
pling of the insula and DMN also occurs in trained meditators
relative to controls (Farb et al., 2007). This makes sense, as
most types of meditation and pranayama involve paying strict
attention to respiration and other visceral sensations, and
reducing mind wandering and distractive thoughts.

This increased sensitivity to physical sensations, particu-
larly of ongoing respiratory activity, resulting from the aug-
mented activation and morphology outlined above, could play
an important role in neural changes that allow for more precise
predictive targeting of tonic LC phase angle and amplitude.
More specifically, it is possible that insular changes could alter
coupling between respiration and attention by improving sig-
nal transmission of respiratory activity back to the cortex,
allowing more effective synchronization of respiration to task.

3.1.3 | Autonomic regulation

The autonomic nervous system maintains the balance of
arousal, matching sympathetic and parasympathetic influences
with internal and external demands (Thayer & Lane, 2000).
The LC plays a complementary cognitive role to the autonomic
arousal systems. This is necessary for effective behavior, and
an inability to appropriately balance cortical and peripheral
arousal can be observed in persons with ADHD (Anderson
et al., 2000; Nagai, Cavanna, & Critchley, 2009; Satterfield &
Dawson, 1971).

In general, LC activity increases sympathetic activity and
decreases parasympathetic activity via its projections to the
spinal cord and various autonomic nuclei. Parasympathetic
influence is reduced via inhibitory projections to the vagal
nuclei, while the excitatory effect of the LC on sympathetic
activity is more complex, involving combinations of excita-
tory and inhibitory projections. For an in-depth treatment of
this complex subject, see Samuels and Szabadi (2008).

Meditation and pranayama are known to alter the
sympathetic-parasympathetic balance of the nervous system
(Bhargava, Gogate, & Mascarenhas, 1988; Ditto, Eclache, &
Goldman, 2006; Fundeburke, 1977; Stancak, Kuna, Sriniva-
san, & Dostalek, 1991; Takahashi et al., 2005; Tang et al.,
2009; Telles et al, 2013; Wallace, 1970), as indicated by
changes in heart rate, heart rate variability, respiration fre-
quency and depth, blood pressure, and galvanic skin
response. Pranayama has been observed to alter this balance
toward sympathetic or parasympathetic activation depending
on the method practiced (Rhaguraj, Ramakrishnan, Nagen-
dra, & Telles, 1998), and focused states are associated with
increased autonomic stability (Porges, 1992; Porges & Ras-
kin, 1969). It has been hypothesized that these changes are
due to stretch-receptor induced vagal inhibition resulting
from deep respiration (Jerath, Edry, Barnes, & Jerath, 2006).

It is possible that some of the beneficial effects of medi-
tation are mediated by altered autonomic functioning and via
the LC, given its intimate relationship to arousal.

3.1.4 | CO2 sensitivity

Because LC activity is known to vary with CO2, it is impor-
tant to consider not only the level of blood CO2 but also the
sensitivity of the organism to it. There is evidence that CO2

is reduced during meditation (Wallace & Benson, 1972;
Wolkove, Kreisman, Darragh, Cohen, & Frank, 1984), and
studies also suggest that CO2 sensitivity in the respiratory
centers of the brainstem is decreased with prolonged practice
of pranayama (Joshi et al., 1992; Miyamura et al., 2002;
Stanescu, Nemery, Veriter, & Marechal, 1981). If true, this
could cause a reduction in the amplitude and variability of
the LC oscillation at respiratory frequency. While it is not
known if the LC specifically is affected in this way, a reduc-
tion in LC tonic variability could increase attentional settling
into a stable attentional attractor state, thereby making unin-
tentional attentional shifts due to chemosensitive (CO2) fluc-
tuations less likely.

The evidence for CO2 sensitivity from pranayama stud-
ies is supported by research on deep-sea divers (Earing,
McKeon, & Kubis, 2014; Florio, Morrison, & Butt, 1979;
Froeb, 1961) and people living at extremely high altitudes
(Chiodi, 1957), all of whom show habituation to elevated
levels of CO2. Interestingly, people suffering from anxiety-
related disorders show an increased sensitivity and an
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inability to habituate to high CO2 levels (Blechert et al.,
2010).

3.1.5 | Possible interaction of vagal and CO2
influences

It is well established that LC neurons are chemosensitive to
fluctuating CO2 levels, and should therefore result in an
oscillation of LC tonic activity at respiratory frequency.
Vagal activity also modulates LC tonic discharge (Groves &
Brown, 2005). This fact is exploited in vagal nerve stimula-
tion (VNS), which increases LC activity (Fornai, Ruffoli,
Giorgi, & Paparelli, 2011; Svensson & Thoren, 1979;
Takigawa & Mogenson, 1977), and is used therapeutically to
suppress seizures and treat drug-resistant depression (Groves
& Brown, 2005). This effect is both immediate (Groves &
Brown, 2005) and has been observed to last up to 3 days fol-
lowing treatment (Dorr & Debonnel, 2006). Lesioning and
inactivation of the LC block the seizure-attenuating effects of
VNS (Krahl, Clark, Smith, & Browning, 1998). The exact
mechanism of action for this is not known, but is thought to
possibly involve the nucleus of the solitary tract (NTS),
as the area is richly innervated by vagal fibers (Groves,
Bowman, & Brown, 2005).

It has been suggested by several authors that stretch
receptors in the lungs inhibit vagal input to the LC, possibly
via the NTS. This would hypothetically result in a second
sinusoidal oscillation of tonic LC activity at respiratory fre-
quency. Pulmonary vagal fibers terminate in the NTS
(Kubin, Alheid, Zuperku, & McCrimmon, 2006), and the
cardiovascular area of the NTS has an established efferent
pathway to the peri-LC (Van Bokstaele, Peoples, & Telegan,
1999), which in turn innervates the LC proper (Aston-Jones,
Zhu, & Card, 2004; Jin et al., 2016). Physiological inhibition
of the LC via the vagus nerve has also been shown to occur
following controlled baroceptor (blood pressure) loading
(Elam, Svensson, & Thoren, 1985; Elam, Yoa, Svensson, &
Thoren, 1984; Murase, Inui, & Nosaka, 1994). There are,
however, presently no direct stimulation studies in the litera-
ture showing that respiratory vagal information is relayed to
the LC, so this remains a speculative, though intriguing,
idea. We note this as a possible significant contribution to
respiratory-attentional coupling, but remain keenly aware
that this is hypothetical until definitive direct stimulation
studies have been performed.

3.2 | Illustration of modulation of model
coupling dynamics

According to our proposed model, any change in a system
parameter will have global results upon the dynamics of the
entire system. To illustrate this concept more clearly, we
examine here dynamical changes in an extremely simple

case where only respiratory frequency is modulated. We
chose this parameter because decreased respiratory fre-
quency, as low as one breath per minute for an hour (Miya-
mura et al., 2002), is an established effect of pranayama
practice (Joshi, Joshi, & Gokhale, 1992; Pinheiro, Medeiros,
Piinheiro, & Marinho, 2007), and also because respiratory
dynamics play a fundamental role in our theory.

As can be seen in Figure 4, the three-dimensional stable
attractor states of the coupled systems exhibit qualitative
changes in response to modulation of respiratory frequency
(/R). As respiratory frequency is decreased, the resulting
limit cycle becomes increasingly stable or tightly coupled,2

the plane of the attractor changes, and the resulting atten-
tional oscillation decreases in frequency, as do its magnitude
and slope (Figure 5b). The frequency and slope magnitude
changes observed in the model suggest corresponding fre-
quency and slope changes in the underlying attentional
refresh cycle. Changes of this sort could be of benefit for
stabilizing attention to task due to dilated periods of stable
LC tonic activity, reduced frequency and amplitude of
attentional oscillations, and decreased unintended mind-
wandering interruptions.

4 | DISCUSSION

Given our knowledge of the involvement of the LC in atten-
tion, cognition, and arousal, its susceptibility to top-down
control, its concurrent chemosensitive respiratory function,
and the possible respiratory-induced vagal influence on LC
firing, we hypothesize that the LC is a critical node in facili-
tating coupling between respiration and attentional state. It is
important to stress that this coupling is bidirectional. Craig-
myle (2013) has articulated that the LC, via ACC activation,
is likely an integral contributor to the beneficial effects of
breath-centered practices on arousal and attention. By intro-
ducing bottom-up respiratory influences on the LC into this
picture, we can then imagine the LC as a nexus of informa-
tion transfer between these two systems, and visualize the
system as bidirectionally coupled (Figure 2).

As previously mentioned, the human attentional system
exhibits regular fluctuations between a task-positive network
and the DMN, associated with task-focused and mind-
wandering states, respectively. Likewise, respiration exhibits
regular oscillations that are normally highly dependent on
CO2 levels in the brainstem. With breath-focused practice, res-
piration decreases in frequency, as does the frequency of mind

2It is possible to quantify the variability of the coupled systems by their
Lyapunov exponents (Rosenstein, Collins, & De Luca, 1993; Wolf,
Swift, Swinney, & Vastano, 1985) and approximate entropy (Pincus,
1991), which are measures of the divergence and complexity of the sys-
tem, respectively, but we refrain from doing so here as we wish solely to
describe the model in general terms.
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wandering (Brewer et al., 2011; Mrazek, Franklin, Phillips,
Baird, & Schooler, 2013), with an increased ability to remain
in a focused state. A decoupling of attention is characterized
by increased LC tonic activity and subsequent increase in neu-
ral gain and functional connectivity, allowing a temporary
competition for attentional resources. Given the known effect
magnitude of CO2/pH on tonic LC activity, it is possible that
respiratory-induced LC fluctuations could provide a window
of attentional flexibility, or a refresh cycle, to a single atten-
tional system that must address task demands, internal hypoth-
esis generation, and external exigencies by nimbly alternating
between them as appropriately and as efficiently as possible.

Sources of noise in LC activity, such as fluctuating
arousal levels, CO2 sensitivity, and possibly poor vagal tone,
are attenuated by meditation practice. This attenuation could
reduce the amount of frontal input or effort necessary to
maintain attentional state on task, and reduce the probability
of unintended attentional shifting due to fluctuations in neu-
ral gain and functional connectivity. In fact, it has been noted

that meditators of intermediate experience (�19,000 hr)
show increased activation in attentional areas compared to
novices or nonmeditators, but extremely advanced meditators
(�44,000 hr) show lower activation in those areas than all
groups (Brefczynski-Lewis, Lutz, Schaefer, Levinson, &
Davidson, 2007). Interviews confirmed this: after a pro-
longed period of practice, very little effort is required to
maintain attention in a conscious focused state. The stabiliza-
tion of attentional states by reducing and/or adapting to the
respiratory influences on LC tonic variability in long-term
practitioners could be one contributing factor.

We propose that the coupled respiratory-LC-attentional
system can be described as a dynamical system consisting of
three coupled autonomous oscillators, which can be charac-
terized by a stable three-dimensional attractor in phase space.
In this model, the attentional network maintains stable states
due to its own internal dynamics, and shifts between these
states can occur by either inhibitory processes (e.g., frontal
input), energy dissipation (e.g., waning task utility or
fatigue), or novel injections of energy into the system (e.g.,
environmental urgency or altered CO2/pH levels). Evolution
of the internal dynamics of this system, resulting from
breath-focused meditation and pranayama, could influence
the stability and/or depth of these attractor basins, lowering
the requirements of energy needed to maintain attentional
states and decreasing the frequency of unintended attentional
shifting (Figure 6).

It is important to point out that there is a fundamental dif-
ference between mindfulness practices in which the breath is
passively monitored with no effort to control it, and pranayama
practices, where the breath is actively regulated. Simple obser-
vation of the breath is an extremely challenging vigilance task,
and practice will likely improve attentional function, and affect

FIGURE 5 Phase space plots derived fromEquation 2. (a) Left hand
column shows limit cycle attractors at three different respiratory frequen-
cies (.35 Hz, .25 Hz, .12 Hz). Note changes in variability and orientation
of attractor in phase space. Coupling coefficient (epsilon) required to
achieve stability was identical at .35 Hz and .25 Hz, but noticeably higher
for slowest respiratory frequency (.12 Hz), possibly suggestive of
increased connectivity requirements. (b) Resulting slope of estimated fron-
tal (attentional) oscillation. Frequency of attentional oscillation decreases
with decreasing respiratory frequency, suggestive of decelerated and atten-
uated attentional refresh cycle component underlying attentional stability

FIGURE 6 Abstract representation of hypothetical attentional basins
of attraction and tonic LC activity inmeditators versus controls. As system
dynamics change (e.g., coupling function increases), the depth and stability
of attractor states hypothetically increase, requiring less energy input to sus-
tain and resulting in a lower probability of unintended attentional shifting
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LC tonic activity, via strengthening of the frontoparietal atten-
tional system, including the insula and the ACC. Such moni-
toring tasks would therefore improve ability to target
appropriate adjustments of LC activity, and possibly to fine-
tune respiratory phase angle predominantly in a top-down
way; however, it is unlikely that they would have as large an
effect on bottom-up mechanisms of physiological regulation of
LC function. Pranayama and other breath control practices, on
the other hand, should reduce respiratory frequency, modulate
arousal, improve vagal tone, and reduce CO2 sensitivity, and
so most of the resulting benefits should be physiologically
derived. There will likely be some overlap in these general cat-
egorizations, as merely observing the breath will undoubtedly
alter it to an extent, and breath regulation will improve focused
attention to a degree. Classifying breath-centric practices in
this way, however, could prove useful in targeting practices in
a therapeutic sense, and aid in understanding the specific
effects of different breath-centered practices.

The hypotheses that respiration and attention comprise a
coupled system via the LC, and that breath-focused practices
will alter its dynamics, have the potential to increase our
understanding of the attentional system and how it interacts
with physiological processes such as respiration. We have
briefly summarized the current understanding of the LC as it
relates to both attention and respiration, and described several
mechanisms that could be involved in the coupling dynamics
of this system, and their possible evolution through these
practices. This could open a window into a deeper scientific
understanding of the cognitive benefits of breath-centered
practices, and possibly offer a scientific explanation as to
why the breath may offer an ideal object of focus for medita-
tion. Research on this hypothesis could further result in non-
pharmacological therapeutic possibilities for attentionally
compromised populations (such as ADHD, TBI, and elderly
populations), with different practices targeting specific prob-
lems with either maintenance of physiological states of
arousal or frontal control mechanisms.
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