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Abstract In the framework of a cosmological model of the Universe filled
with a nonrelativistic particle soup, we easily reproduce inflation due to the
quantum potential. The lightest particles in the soup serve as a driving force
of this simple, natural and promising mechanism. It is explicitly demon-
strated that the appropriate choice of their mass and fraction leads to rea-
sonable numbers of e-folds. Thus, the direct introduction of the quantum
potential into cosmology of the earliest Universe gives ample opportunities
of successful reconsideration of the modern inflationary theory.

Keywords quantum potential · inflation

Introduction

In the de Broglie-Bohm causal interpretation of quantum mechanics [1,2,3]
a special role is attributed to the so-called quantum potential (commonly
denoted by Q). It was considered for a long time that nontrivial physical
features of this quantity represent exclusively a prerogative of quantum me-
chanics and have no classical (non-quantum) analogs. However, in the recent
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paper [4] (see also [5] for generalization to the relativistic case) it was demon-
strated that the quantum potential (the quantum dissipation energy) explains
successfully the heart of the quantization problem in classical mechanics.

As an example of applying the quantum potential approach one can cite
deriving the quantum hydrodynamics equations and reproducing easily and
straightforwardly the Bogolyubov spectrum of elementary excitations for the
Bose-Einstein condensate of an imperfect fluid with pairwise interaction be-
tween the particles [6,7].

The other striking example concerns axions (or axion-like particles) being
popular dark matter candidates as well as a valid cause of the Sun luminosity
and total solar irradiance variations (see, e.g., [8]). The quantum potential is
often used for describing the structure formation in the Universe with their
participation [9,10].

Let us raise the following natural question: what can be the cosmological
role of the quantum dissipation energy Q? In this paper we give the unam-
biguous answer: it can be responsible for inflation! We show that the Einstein
equations with the corresponding energy-momentum tensor lead to the scale
factor being characterized by the inflationary behavior at the earliest stage
of the Universe evolution. Under certain specified conditions this behavior
agrees with the observational requirements. In the light of the Planck results
[11] the proposed scenario can be a deserving attention alternative to the
modern inflationary theories and a possible way out of their difficulties.

The paper is organized in the following way. In the first section we con-
struct a cosmological model with the quantum potential, derive the Hubble
parameter and demonstrate the inflation possibility in principle. In the sec-
ond section duration of inflation, the number of e-folds and other important
physical quantities are estimated and restricted. We conclude by collecting
the main results in Summary.

Cosmological model with quantum potential

In the beginning let us confine ourselves to the simple case when the earliest
Universe is supposed to be filled with only one component, namely, the en-
tirely nonrelativistic collisionless gas of point-like particles of the equal mass
m. Then the energy-momentum tensor components have the following form:

T ik = (εc + εq + pq)u
iuk − pqg

ik , (1)

where εc is the classical (i.e., non-quantum) energy density (the correspond-
ing classical pressure pc is equal to zero), while εq and pq represent quantum
admixtures. It is known (see, e.g., [12,13,14]) that for a pressureless fluid

εc(a) = ε0

(a0
a

)3

= ρphc
2 , (2)

where a(t) is the scale factor entering the standard FLRW metric (the spatial
curvature is assumed to equal zero for simplicity)

ds2 = c2dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (3)
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and ε0 is the value of εc when the value of a is a0. Further, the physical rest
mass density of the considered gas ρph = Nm/Vph ∼ 1/a3, where the physical
volume Vph ∼ a3 contains N particles on the average. At the same time, with
the help of the known expression for the one-particle quantum potential (see,
e.g., [1,2,3,4] and [5] for generalization to the relativistic case)

Q1 =
~
2

2m

1√
εc

� (
√
εc) , (4)

where � is the D’Alembert operator (�f = f;i;kg
ik for an arbitrary function

f(t, x, y, z), semicolons denote covariant derivatives), it is easy to obtain

εq =
NQ1

Vph
=

~
2

2m2c2
√
εc� (

√
εc) = −3

4
τ2ε0

(a0
a

)3
(

ä

a
+

1

2

ȧ2

a2

)

, (5)

where τ = ~/
(

mc2
)

is a characteristic time, and dots denote derivatives
with respect to t. Here we actually resort to the mean field description,
similar to that of the Bose-Einstein condensate in [7]. Namely, instead of the
quantum potentialQ1 of a single particle we introduce the collective quantum
energy density εq. Under the assumption of noninteracting particles, this
is a well-grounded approach allowing, in particular, to construct Bohmian
hydrodynamics for a perfect fluid [7].

The corresponding quantum pressure pq can be found from the first law
of thermodynamics written down in the form d

(

εqa
3
)

+ pqd
(

a3
)

= 0:

pq =
1

4
τ2ε0

(a0
a

)3

a
d

da

(

ä

a
+

1

2

ȧ2

a2

)

=
1

4
τ2ε0

(a0
a

)3 a

ȧ

( ...
a

a
− ȧ3

a3

)

. (6)

It is worth mentioning that the expression (4) represents the direct gen-
eralization of the nonrelativistic one-particle quantum potential (described,
e.g., by the formula (15) in [7]) to the relativistic case: the density n(r, t) is
replaced by the relativistic-invariant energy density εc, and the correspond-
ing relativistic one-particle quantum potential (4) is characterized by the
correct nonrelativistic limit Q1 → −[~2/(2m)]△

√
n/

√
n when c → +∞,

εc → mc2n(r, t) (here, of course, the flat spacetime case is meant).
The Einstein equations give

3ȧ2

c2a2
=

8πGN

c4
(εc + εq) =

8πGN

c4
ε0

(a0
a

)3
[

1− 3

4
τ2

(

ä

a
+

1

2

ȧ2

a2

)]

, (7)

where GN is Newtonian gravitational constant. It immediately follows from
(7) that the Hubble parameter squared

H2 =

(

ȧ

a

)2

=
1

T 2(a)

[

1 + C exp

(

−8T 2(a)

9τ2

)]

,

T (a) = T0

(

a

a0

)3/2

=

(

3c2

8πGNε0

)1/2 (
a

a0

)3/2

, (8)

where T0 =
√

3c2/(8πGNε0) is one more characteristic time, and C repre-
sents some integration constant. It should be noted here that in the limit
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a → +∞ we get H2 → T−2(a) = 8πGNεc(a)/
(

3c2
)

, in complete agreement
with the corresponding cosmological model disregarding quantum effects (see,
e.g., [12,13,14]). Thus, the classical behavior is reproduced asymptotically as
it should be.

Being interested exclusively in the inflationary stage of the Universe evo-
lution, at first let us naively impose a natural initial condition: H → λ =
const > 0 when a → 0 (the Big Bang moment). Then C = −1 and, conse-
quently,

H2 =

(

ȧ

a

)2

=
1

T 2(a)

[

1− exp

(

−8T 2(a)

9τ2

)]

. (9)

For sufficiently small values of a we obtain from (9)

H2 ≈ 1

T 2(a)

(

1− 1 +
8T 2(a)

9τ2

)

=
8

9τ2
= λ2 , (10)

whence

λ =
2
√
2

3τ
=

2
√
2

3

mc2

~
. (11)

It also immediately follows from (9) that

ä

a
=

4

3τ2
exp

(

−8T 2(a)

9τ2

)

− 1

2T 2(a)

[

1− exp

(

−8T 2(a)

9τ2

)]

. (12)

For sufficiently small values of a we get from (12) that ä/a ≈ λ2. Thus,
at the Big Bang moment (we can choose the value t = 0 for it without loss of
generality), when a = 0, the ratios ȧ/a and ä/a are both positive and finite.
The first fact gives rise to inflation while the second one ensures smoothness
of the scale factor and its derivative even at t = 0. On the contrary, it is known
that in the framework of the corresponding cosmological model disregarding
quantum effects (see, e.g., [12,13,14]) a(t) ∼ t2/3 and, consequently, the
derivatives ȧ(t) ∼ t−1/3, ä(t) ∼ −t−4/3 and the ratios ȧ/a ∼ t−1, ä/a ∼ −t−2

have singularities at t = 0. Besides, obviously, there is no inflation in this
case since the expansion of the Universe is decelerating. Taking into account
quantum effects eliminates these disadvantages in elegant manner.

However, from the purely mathematical point of view, the aforesaid naive
choice of initial conditions will give a(t) = 0 forever, because simultaneously
a(0) = 0, ȧ(0) = 0 (and ä(0) = 0). In this connection, as usual, let us impose
another initial condition

a(tPl) = a0, tPl =

√

~GN

c5
≈ 5.391× 10−44 s , (13)

which is prevalent and reasonable from the physical point of view [13,14].
Consequently, a0 = aPl,

ε0 = εPl =
c7

~G2
N

≈ 4.633× 10114
erg

cm3
. (14)
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It should be mentioned that there is no sense to apply the derived equation
(9) for t < tPl (Planck epoch). It is applicable only for t > tPl, and we confine
ourselves to this case.

Concluding this section, we make an extremely important generalization
to the multicomponent case by redefining ε0 and τ (as well as m) as follows:

ε0 =
∑

i

ε0i, τ2 =
1

ε0

∑

i

ε0iτ
2
i ,

1

m2
=

1

ε0

∑

i

ε0i
1

m2
i

, (15)

where τi = ~/
(

mic
2
)

. In other words, we identify ε0 with the total energy
density of the nonrelativistic particle soup and τ (as well as m) with its
averaged parameters. This generalization is crucial at least for two main
reasons. First, the mass generators (Higgs bosons) must be evidently present
in the mixture, but they do not necessarily play the leading or even significant
role in the proposed inflation mechanism, perhaps, letting other coexisting
particles have it. Second, if the theory requires a certain value of m which
does not correspond to any known particle, there is a good chance to obtain
this required value by mixing different particles with known masses.

Let us briefly illustrate the situation by considering the two-component
system of particles. It will be characterized by the mass m defined by the
equation

1

m2
=

η1
m2

1

+
η2
m2

2

, η1 =
ε01

ε01 + ε02
, η2 =

ε02
ε01 + ε02

, (16)

where η1 and η2 are the corresponding energy fractions, η1 + η2 = 1. Under
which conditions the contribution of particles of the second kind may be
neglected here? Obviously, the answer is provided by the strong inequalities

η1
m2

1

≫ η2
m2

2

, η1 ≫ η2

(

m1

m2

)2

. (17)

For example, if m1 ≈ 10−5 eV (according to [8,13,14], this may be the
axion mass) while m2 ≈ 125GeV (this value is associated with the Higgs
boson mass), then particles of the first kind play the leading role for inflation
if η1 ≫ η2× 6.4× 10−33, and this strong inequality may hold true even when
their energy fraction η1 is really negligible in comparison with η2. Thus, the
major part in the proposed inflation scenario belongs to the lightest particles
in the soup.

Evidently, the assumption that the considered particles are nonrelativistic
does not contradict the general notion of the ”hot” early Universe. Really,
if particles of some sort are initially ”cold” and interact weakly enough with
particles of all other sorts, then they will remain nonrelativistic. At the same
time the average temperature of the whole soup can be high.

Duration of inflation and number of e-folds

In order to define duration of inflation, let us answer the following important
question: at which moment does the expansion acceleration equal zero? This
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moment can be found from the equation

3µe exp (−µe)− 1 + exp (−µe) = 0, µe =
8T 2(ae)

9τ2
, (18)

where ae = a(te). The numerical solution is µe ≈ 1.904. Obviously, the less is
τ , the less is ae (as well as the time te itself) required for reaching this value
of µ. The equation

T 2(ae)

τ2
=

3c2

8πGNεPlτ2

(

ae
aPl

)3

=
3

8π

(

m

mPl

)2 (
ae
aPl

)3

≈ 2.142 (19)

defines the end of the inflation stage. Here

mPl =

√

~c

GN
≈ 2.177× 10−5 g = 1.221× 1028 eV . (20)

It follows from (19) that the number of e-folds is given by a very simple
and elegant expression:

Ne = ln
ae
aPl

≈ 0.9624 +
2

3
ln

mPl

m
. (21)

The accepted range 50 . Ne . 60 [11] corresponds to the mass range
4.238 × 10−11 eV . m . 1.385 × 10−4 eV. It is interesting that the axion
mass ma ≈ 10−5 eV [8,13,14] lies within this range and gives Ne ≈ 52. It
means that if the axion is a driving force of inflation, then its maximum
energy fraction ηmax

a may tend to a unity. At the same time, the minimum
axion energy fraction ηmin

a may equal approximately 0.005 (i.e., only 0.5%),
corresponding to Ne ≈ 50. So it is enough to have only 0.5% (with respect
to the energy density) of axions in the mixture with 99.5% of other heavier
particles for ensuring successful inflation.

It is also interesting that ultralight particles (considered, e.g., in [16,
15,17] as other dark matter candidates) with the mass mul of the order
10−(22÷23) eV may serve as a suitable driving force of inflation with negligi-
ble energy fractions 5.21× 10−(37÷39) . ηul . 5.57× 10−(24÷26).

Since τ/tPl = mPl/m, we also easily get the τ -range 4.751×10−12 s . τ .
1.553× 10−5 s. At the same time, for the te-range we have 2.528× 10−10 s .
te . 9.912× 10−4 s.

Introducing the convenient dimensionless quantities

µ(a) = ξ3(a) =
8T 2(a)

9τ2
=

1

3π

(

m

mPl

)2 (
a

aPl

)3

, (22)

from (9) and (12) we obtain respectively

H

λ
=

[

1− exp
(

−ξ3
)

ξ3

]1/2

, (23)

ä

λ2a
=

3

2
exp

(

−ξ3
)

− 1

2ξ3
[

1− exp
(

−ξ3
)]

. (24)
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Both these functions are shown in Fig. 1 (blue and orange curves re-
spectively). Red and purple curves correspond to the classical case with-
out quantum effects when all terms containing exponential functions are
dropped and H = λξ−3/2, ä/a = −

(

λ2/2
)

ξ−3. Finally, the green vertical

line ξ = ξe = (µe)
1/3 signifies the end of inflation. So there are inflationary

expansion (with the positive acceleration) for ξ < ξe and traditional expan-
sion (with the negative acceleration) for ξ > ξe, as it certainly should be.

0.5 1.0 1.5 2.0 2.5
Ξ

-0.5

0.5

1.0

H

Λ
,

aÐ

Λ2 a

Fig. 1 Ratios H/λ (23) and ä/
(

λ2a
)

(24) as functions of ξ.

Summary

In this paper we have constructed a simple cosmological model of the Uni-
verse filled with a soup of nonrelativistic particles. The contribution of their
quantum potential to the corresponding energy-momentum tensor (see (5)
for the quantum energy density εq) has led to the scale factor a(t) (see (9) for
the Hubble parameter squared H2 and (12) for the ratio ä/a), demonstrat-
ing the inflationary behavior ȧ ∼ a immediately after Planck epoch and then
approaching asymptotically the classical (i.e., non-quantum) limit ȧ ∼ a−1/2.

Our inflationary theory gives the reasonable number of e-folds 50 . Ne .
60 for a specified range of the effective particle mass 4.238×10−11 eV . m .
1.385× 10−4 eV. We have shown that the lightest particles in the soup most
likely play a crucial role in this scenario (see (15)-(17) and the related text).
Axions and ultralight particles represent the illustrative examples, for which
we have imposed constraints on the corresponding energy fractions.

Thus, we propose a promising mechanism of successful inflation. Of course,
cosmological problems of the post-inflationary stage as well as an explana-
tion for the origin of primordial fluctuations and necessary predictions of
their statistical properties, which are currently tested by observations of the
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cosmic microwave background anisotropy, lie beyond the scope of this short
paper and require separate additional research. Our main aim was to change
the angle of view on cosmology of the earliest Universe. Drawing a conclu-
sion, we claim that the quantum potential of light particles may serve as the
main reason for its inflationary evolution.
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